Еженедельное издание

Рекомендуемая розничная цена: **379** руб. Розничная цена: **81 900 бел. руб.**, **1 290 тенге**

СОБЕРИ РАДИОУПРАВЛЯЕМУЮ МОДЕЛЬ!

Nº35

масштаб 1:16

DeAGOSTINI

Танк Т-72

Выпуск №35, 2016 Еженедельное издание

РОССИЯ

Учредитель, редакция:

000 «Идея Центр»

Юридический адрес:

Россия, 105066, г. Москва, ул. Александра Лукьянова, д. 3, стр. 1 Письма читателей по данному адресу не принимаются.

Генеральный директор: Анастасия Жаркова Главный редактор: Дарья Клинг

Издатель: ООО «Де Агостини», Россия **Юридический адрес:** Россия, 105066, г. Москва, ул. Александра Лукьянова, д. 3, стр. 1 Письма читателей по данному адресу не принимаются.

Генеральный директор: Николаос Скилакис Финансовый директор: Полина Быстрова Коммерческий директор: Александр Якутов Менеджер по маркетингу: Михаил Ткачук Менеджер по продукту: Надежда Кораблёва

Для заказа пропущенных номеров и по всем вопросам, касающимся информации о коллекции, заходите на сайт www.deagostini.ru или обращайтесь по телефону горячей линии в Москве:

Телефон бесплатной горячей линии для читателей в России:

8-800-200-02-01

8-495-660-02-02

Адрес для писем читателей:

Россия, 150961, г. Ярославль, а/я 51, «Де Агостини», «Танк Т-72» Пожалуйста, указывайте в письмах свои контактные данные для обратной связи (телефон или e-mail).

Распространение: ООО «Бурда Дистрибьюшен Сервисиз»

Свидетельство о регистрации СМИ в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) ПИ № ФС77-56180 от 15.11.2013

БЕЛАРУСЬ

Импортер и дистрибьютор в РБ:

OOO «Росчерк», РБ, 220037, г. Минск, ул. Авангардная, 48а, литер 8/к тел./факс: +375 (17) 331 94 41

Телефон «горячей линии» в РБ: + 375 17 279-87-87 (пн-пт, 9.00 – 21.00)

Адрес для писем читателей:

Республика Беларусь, 220040, г. Минск, а /я 224, ООО «Росчерк», «Де Агостини», «Танк Т-72»

КАЗАХСТАН

Распространение:

ТОО «Казахско-Германское предприятие БУРДА-АЛАТАУ ПРЕСС», Казахстан, г. Алматы, ул. Зенкова, 22 (уг. ул. Гоголя), 7 этаж.

Тел.: +7 727 311 12 86, +7 727 311 12 41 (вн. 109) факс: +7 727 311 12 65

Рекомендуемая розничная цена: 379 руб. **Розничная цена:** 81 900 бел. руб., 1290 тенге

Неотьемлемой частью журнала являются элементы для сборки модели.

Издатель оставляет за собой право изменять розничную цену, а также повышать ее в отдельных выпусках коллекции в силу более высокой производственной стоимости некоторых деталей модели.

Редакция оставляет за собой право изменять последовательность номеров и их содержание.

ВНИМАНИЕ: Модель Танк Т-72 не является игрушкой и не предназначена для детей. Соблюдайте приведенные в журнале указания.

Производитель оставляет за собой право в любое время изменять последовательность и свойства комплектующих деталей данной модели.
Представленные изображения радиоуправляемой модели Танк Т-72 в масштабе 1:16 и элементов для ее сборки могут отличаться от реального внешнего вида в продаже.

Автор-составитель: М. Коломиец

Отпечатано в типографии:

OOO «Компания Юнивест Маркетинг», 08500, Украина, Киевская область, г. Фастов, ул. Полиграфическая, 10

Тираж: 28 000 экз.

© 2016 Редакция и учредитель ООО «Идея Центр» © 2016 Издатель ООО «Де Агостини»

ISSN 2409-0107

Данный знак информационной продукции размещен в соответствии с требованиями Федерального закона от 29 декабря 2010 г. № 436-03 «О защите детей от информации, причиняющей вред их здоровью и развитию».

Коллекция для взрослых не подлежит обязательному подтверждению соответствия единым требованиям, установленным Техническим регламентом Таможенного союза «О безопасности продукции, предназначенной для детей и подростков» ТР ТС 007/2011 от 23 сентября 2011 г. № 797

Дата выхода в России: 09.01.2016

Библиография:

3СУ-23-4М. Техническое описание. М.: «Военное издательство Министерства обороны СССР», 1980.

 $\it M.$ Коломиец. «Супертанки Сталина ИС-7 и др.». М.: «Яуза», «Стратегия КМ», «Экомо», 2015.

М. Коломиец. «Русские броневики в боях». М.: «Яуза», «Стратегия КМ», «Эксмо», 2013.

Уважаемые читатели!

Для вашего удобства рекомендуем приобретать выпуски в одном и том же киоске и заранее сообщать продавцу о вашем желании покупать следующие выпуски коллекции.

годы Великой Отечественной войны части Красной Армии не имели на вооружении зенитных самоходных установок на гусеничном шасси. С 1943 года по ленд-лизу стали поступать ЗСУ на шасси американских полугусеничных бронетранспортеров, которые с успехом использовались в боях на завершающем этапе войны.

Новые ЗСУ

В 1945–1948 годах было изготовлено около сотни ЗСУ-37 (37-мм автоматическая пушка на шасси СУ-76М). В послевоенные годы возникла необходимость в создании мобильных бронированных зенитных самоходных установок для борьбы с реактивными самолетами, имевшими

околозвуковую скорость. В результате в 1951–1955 годах на вооружение Советской Армии поступили зенитные самоходные установки с 14,5-мм пулеметами на базе бронетранспортеров БТР-40 и БТР-152 и ЗСУ-57-2, созданная с использованием узлов и агрегатов танка Т-54 и вооруженная спаркой 57-мм автоматов.

Поэтому в апреле
1957 года согласно постановлению Совета Министров
СССР началось проектирование сразу четырех новых
скорострельных ЗСУ с радиолокационными системами наведения, получивших условные обозначения «Шилка»,
«Енисей», «Волга» и «Днепр».

Зенитная самоходная установка «Шилка» предназначалась для прикрытия танковых колонн от атак с воздуха при высоте целей от 100 м до 1500 м. В качестве вооружения предполагалось использовать счетверенную установку 23-мм пушек, поэтому вскоре самоходка получила и другое обозначение — ЗСУ-23-4. Проектирование машины поручили КБ Мытищинского

машиностроительного завода под руководством главного конструктора Н. А. Астрова. Приборный комплекс для «Шилки» разрабатывало Ленинградское ОКБ-357 (главный конструктор В. Э. Пиккель), радиолокационную станцию сопровождения «Тобол» — КБ тульского завода № 668 (главный конструктор Я. И. Назаров), счетверенную 23-мм автоматическую пушку «Амур» — ОКБ-575 (главный конструктор Н. Е. Чудаков). Таким образом, в создании машины было задействовано большое количество предприятий различных ведомств.

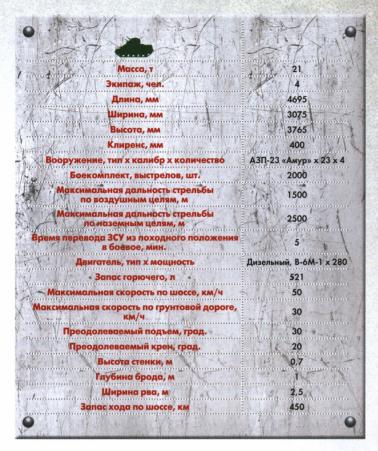
ЗСУ «Енисей» предназначалась для зенитного прикрытия мотострелковых и танковых полков от средств воздушного нападения на высотах 100—3000 м. В качестве вооружения использовалась спарка 37-мм автоматов, поэтому машина именовалась ЗСУ-37-2. Ее разработку вел Уралмашзавод под руководством главного конструктора Г.С. Ефимова.

Самоходки «Днепр» и «Волга» проектировали конструкторы Омского завода № 174. Машины предполагалось вооружить одной или двумя 57-мм автоматическими пушками. Первоначально именно этим двум машинам отдавали предпочтение и военные, и представители промышленности. Однако проектирование радиолокационных станций наведения и аппаратуры целеуказания для этих самоходок сильно затянулось, и в результате работы по ним в начале 1959 года полностью прекратили. После этого все силы были брошены на «Шилку» и «Енисей».

В 1961 году прошли испытания опытных образцов 3СУ-23-4 и 3СУ-37-2. Они показали, что одна машина «Енисей» по эффективности огня превосходит четыре установки ЗСУ-57-2, которые состояли на вооружении. Хорошие результаты были получены и при испытании ЗСУ «Шилка». Государственная комиссия, проводившая испытания самоходок, отмечала, что «Шилка» и «Енисей» оснащены радиолокационным комплексом, который обеспечивает ведение огня

и ночное время. При стрельбе по самолетам МиГ-17 и Ил-28 на высоте 200 м и 500 м «Шилка» оказалась эффективнее «Енисея» в 2 и 1,5 раза соответственно. В свою очередь, «Енисей» обладал преимуществом по дальности стрельбы (3000 м по высоте и 4500 м по горизонту). К тому же, огонь самоходки мошными осколочными и бронебойными снарядами исключал точное бомбометание по прикрываемым танкам. Тем не менее комиссия рекомендовала принять на вооружение Советской Армии обе зенитные самоходные установки. Однако, рассмотрев все

при любой погоде в дневное


результаты по испытаниям машин, Совет Министров СССР 5 сентября 1962 года принял на вооружение Советской Армии только ЗСУ «Шилка». Возможно, в правительстве посчитали, что изготавливать две самоходки с похожими характеристиками нерационально. Тем не менее всех участников разработки зенитных самоходных установок «Шилка» и «Енисей» поощрили. Так, конструкторы 3СУ-23-4 — Н. А. Астров, Я.И. Назаров, В.Э. Пиккель и другие — были удостоены Государственной премии CCCP.

«Шилка» на учениях, лето 1979 года. Стволы 23-мм пушек на максимальном угле возвышения, хорошо видна антенна РЛС.

ЗСУ-23-4 в строю

Самоходка «Шилка» стала первой отечественной зенитной установкой, которая могла вести эффективную стрельбу по воздушным целям в движении. Это обеспечивалось наличием систем гиростабилизации линий прицеливания и вы-

СУ «Шилка» широко поставлялась за рубеж — в настоящее время она состоит на вооружении более тридцати стран. Машина активно участвовала в боевых действиях во Вьетнаме, Афганистане, арабо-израильских войнах, боевых действиях на Ближнем Востоке и в Африке.

Зенитная самоходно-артиллерийская установка «Шилка» Войска Польского, 2002 год.

стрела. Серийное производство «Шилки» началось в 1964 году. Шасси для нее (оно именовалось «гусеничная машина ГМ-575») выпускали Мытищинский маши-

ностроительный и Минский тракторный заводы, а окончательную сборку самоходки осуществлял Ульяновский механический завод. Выпуск «Шилки» осуществлялся до 1983 года, всего за это время изготовили более 6000 самоходок.

В Советской Армии 3СУ-23-4 поступала на вооружение мотострелковых и танковых полков. «Шилка» могла использоваться во всех видах боевых действий полка не только для прикрытия его подразделений от авиации противника, летящей на малых и сверхмалых высотах, но и для поражения наземных целей неприятеля.

ЗСУ-23-4 относится к закрытому типу самоходных установок. В средней части корпуса устанавливались вращающаяся башня со счетверенной автоматической 23-мм пушкой «Амур» с приводами наведения, радиолокационно-приборный комплекс поиска и наведения РПК-2 «Тобол», размещались боеприпасы и три члена экипажа — командир (слева

Зенитная самоходно-артиллерийская установка ЗСУ-23-4 ведет огонь. Хорошо видны гильзы, выбрасываемые при стрельбе.

от пушки), оператор дальности (справа) и оператор поиска, он же наводчик (между ними).

Наблюдение за полем боя командир осуществлял через перископические приборы, расположенные во вращающейся командирской башенке.

В передней части машины находилось место механикаводителя, который на марше наблюдал за дорогой через открытый люк или ветровое стекло в лючке броневой крышки люка, а в бою использовал перископический прибор БМ-190 или два стеклоблока Б-1.

Конструкция «Шилки»

Темп стрельбы 23-мм счетверенной автоматической зенитной пушки составляет 3600-4000 выстрелов в минуту. Управление стрельбой дистанционное, с помощью электроспусков. Подготовка автомата к стрельбе (отвод затворной рамы в заднее положение), перезаряжание, возвращение подвижных частей в переднее положение при стрельбе и по ее окончании осуществляются с помощью механизма пневмоперезарядки. Питание —

ленточное, непрерывное. Боекомплект (2000 выстрелов) размещается в четырех коробках в передних отсеках башни и отделяется от экипажа броневой перегородкой. Каждой ЗСУ придается транспортно-заряжающая машина с 4000 выстрелами.

Охлаждение стволов автоматов во время стрельбы осуществляется жидкостной системой открытого типа с принудительной циркуляцией жидкости. После 120–150 выстрелов на ствол требовалось сделать перерыв на 10–15 секунд для охлаждения стволов.

Наведение пушки ведется электрогидравлическими приводами, максимальная скорость вращения башни — 70 градусов в секунду, минимальная — 0,5 градусов в секунду. Угол вертикального наведения — от –4° до +85°. При стрельбе по наземным целям используется ручной способ наведения.

Радиолокационный приборный комплекс управления огнем размещается в приборном отсеке башни и состоит из радиолокационной станции 1РЛЗЗ и приборной части комплекса «Тобол». Радиолокационная станция позволяет обнаруживать и сопровождать воздушные цели, а также точно измерять их текущие координаты. Она осуществляет захват цели на дальностях не менее 10 км при высоте полета 2000 м.

Система стабилизации при движении машины обеспечивает обнаружение, сопровождение цели и ведение огня по ней за счет стабилизации линии выстрела. Имеется оптическая система прицел-дублер для наводки пушки при стрельбе по воздушной цели без радиолокационного приборного комплекса и при стрельбе по наземным целям.

Корпус и башня «Шилки» свариваются из 6-мм и 8-мм стальных броневых листов. Силовая установка — дизель В-6М-1 мощностью 280 л.с. Максимальная скорость машины по шоссе — 50 км/ч, запас хода — 450 км. Механическая трансмиссия состоит из входного редуктора трансмиссии, многодискового главного фрикциона, пятиступенчатой коробки передач, двух планетарных механизмов поворота и двух бортовых редукторов.

В ходовой части используются направляющие колеса и опорные катки от плавающего танка ПТ-76. Подвеска — индивидуальная, торсионная с гидроамортизаторами. Гусеница мелкозвенчатая.

«Шилка» оснащена радиостанцией P-123 и ТПУ P-124 на четыре абонента, приборами ночного видения, системой противоатомной защиты и автоматическим противопожарным оборудованием.

В ходе производства ЗСУ-23-4 многократно модернизировалась, главным образом с целью повышения надежности и дальности стрельбы из 23-мм орудий и улучшения систем наведения и сопровождения цели. Например, вариант ЗСУ-23-4М4 предусматривает введение в состав батареи «Шилок» подвижного пункта разведки и управления «Сборка M1» в качестве командного пункта, а также оснащение машин каналом обмена информацией между каждой ЗСУ и командным пунктом. Кроме того, имеющаяся РЛС заменяется на станцию с улучшенными характеристиками, а также проводится модернизация шасси машины.

конце 1944 года советские конструкторы приступили к эскизным проработкам нового тяжелого танка. Предполагалось, что эта машина воплотит в себе весь опыт, накопленный при конструировании, эксплуатации и боевом применении тяжелых танков в годы войны.

Проект был выполнен конструкторами Ленинградского Кировского завода под руководством Ж. Я. Котина к осени 1945 года. Машина получила обозначение «объект 260», а несколько позднее и индекс — ИС-7.

Корпус танка был спроектирован с большими углами наклона броневых листов. В качестве силовой установки планировалось использовать блок из двух дизелей В-16 общей мощностью 1200 л.с. Топливные баки располагались в подмо-

торном фундаменте, где за счет скошенных внутрь бортовых листов корпуса образовалось пустое пространство. Вооружение ИС-7 — 130-мм пушка С-26, три 7,62-мм пулемета и два 14,5-мм пулемета Владимирова. Несмотря на большую массу — 65 т, машина получилась очень компактной.

Во второй половине 1946 года по чертежам конструкторского отдела танкового производства в цехах Кировского завода изготовили два

опытных образца «объекта 260», прошедших заводские испытания.

В течение 1947 года в КБ Кировского завода шла интенсивная работа по созданию проекта улучшенного варианта танка ИС-7. Корпус стал немного шире, а башня — более приплюснутой. ИС-7 получил гнутые борта корпуса, предложенные конструктором Г. Н. Москвиным. Машина получила новую, более мощную 130-мм пушку С-70 и новинку

для своего времени — систему управления огнем, которая обеспечивала наведение стабилизированной призмы прицела на цель независимо от пушки, автоматическое приведение пушки к стабилизированной линии прицеливания при выстреле и автоматическое производство выстрела.

Разработка чертежей прибора осуществлялась КБ Кировского завода, а завод № 212 Минсудпрома изготовил три образца прибора, из которых один проходил испытания и отладку в морском НИИ № 1. Для ИС-7 разработали и механизм заряжания по типу морских установок, имевщий электропривод и малые габариты.

Танк имел 8 пулеметов, из них два — калибра 14,5 мм. Один крупнокалиберный и два РП-46 калибра 7,62 мм были установлены в маске пушки. Еще два РП-46 находились на надгусеничных полках, два других, повернутых назад, крепились снаружи по бортам кормовой части башни. Все пулеметы — с дистанционным управлением. На крыше башни на специальной штанге устанавливался второй 14,5-мм пулемет. Боекомплект состоял из 30 130-мм выстрелов, 400 патронов калибра 14,5 мм

Экипаж танка состоял из пяти человек, причем четверо размещались в башне. Командир располагался справа от орудия, наводчик — слева, а два заряжающих — сзади.

и 2500 — 7,62 мм.

В качестве силовой установки на новом варианте ИС-7 использовался серийный морской 12-цилиндровый дизель М-50Т мощностью 1050 л.с.

На танке применялась планетарная, 8-ступенчатая трансмиссия с механизмом поворота типа ЗК. Управление ИС-7 облегчалось гидравлическими сервоприводами с перспективным выбором передач.

Ходовая часть включала семь опорных катков большого

ля охлаждения двигателя впервые в отечественном танкостроении использовались эжекторы. На ИС-7 применялся воздушный фильтр с двумя ступенями очистки и автоматическим удалением пыли из бункера с использованием энергии выхлопных газов.

Емкость мягких топливных баков, изготовленных из специальной ткани и выдерживавших давление до 0,5 атм, была доведена до 1300 л.

диаметра на борт и не имела поддерживающих роликов. Катки выполнялись двойными, с внутренней амортизацией. В качестве упругого элемента подвески применялись пучковые торсионы. Для улучшения плавности хода были использованы

гидравлические амортизаторы двустороннего действия. Гусеница имела литые траки коробчатого сечения с резинометаллическим шарниром. Их применение позволило увеличить износоустойчивость и уменьшить шум при движении.

В 1947–1948 годах Кировский завод изготовил четыре ИС-7. После проведения заводских испытаний их передали на испытания государственные. Председателем Государственной комиссии назначили генерал-майора А. М. Сыча. Танк произвел сильное впечатление на членов комиссии: при массе 68 т машина без труда развивала скорость 60 км/ч и обладала отличной проходимостью. Бро-

невая защита ИС-7 в то время была практически неуязвимой: достаточно сказать, что новый танк выдерживал обстрел не только 88-мм, но и 128-мм немецких противотанковых пушек.

По результатам испытаний рекомендовалось принять ИС-7 на вооружение и изготовить установочную партию из 50 машин. Однако в начале 1949 года в правительстве решили, что масса тяжелого танка не должна была превышать 50 т. В результате все работы по ИС-7 свернули.

Тяжелый танк ИС-7 без преувеличения можно считать шедевром советского тяжелого танкостроения. По совокупности основных боевых показателей он не имел себе равных в мире. При боевой массе как у «Королевского тигра», ИС-7 значительно превосходил этот серийный танк Второй мировой войны — один из сильнейших и самый тяжелый, -- созданный всего двумя годами раньше, как по броневой защите и по вооружению, так и по динамическим качествам. Единственный сохранившийся до наших дней образец танка ИС-7 (модель 1948 года) находится в экспозиции Музея бронетанкового вооружения и техники в Кубинке.

Опытный образец танка ИС-7 (образец № 2) перед началом испытаний, зима 1947 года. На корме корпуса закреплены дымовые

 Опытный образец танка ИС-7 (образец № 3), общий вид, осень 1948 года. Хорошо видна зенитная установка 14,5-мм пулемета КПВ.

звестно, что во время Первой мировой войны Русская армия танков не имела. А вот броневых автомобилей было достаточно, и действовали они в 1914—1917 годах очень успешно и эффективно. Причем среди них были и такие типы машин, которые вполне можно считать танками, но только на колесах. Речь идет о броневых автомобилях «Гарфорд».

В 1914 году, практически сразу же после начала Первой мировой войны, в России приступили к формированию автомобильных пулеметных взводов. Для этого в первое время поступали вооруженные пулеметами бронеавтомобили. Но вскоре было принято решение о включении в состав взводов и пушечной машины. За ее разработку взялся начальник Офицерской стрелковой школы генерал-майор Н. М. Филатов.

В качестве базового шасси решили использовать 5-тон-

ные американские грузовые автомобили «Гарфорд», а для основного вооружения Н. М. Филатов выбрал 76,2-мм противоштурмовое орудие образца 1910 года.

Разработанный Н. М. Филатовым бронекорпус имел довольно сложную форму и склепывался из броневых листов толщиной 6,5 мм. В передней части корпуса находился двигатель, а над ним — кабина водителя и его помощника. В задней части машины в довольно массивной вращающейся броневой

башне, имевшей ограниченный обстрел по горизонту (порядка 270 градусов), размещались 76,2-мм пушка и пулемет Максима. Еще два пулемета устанавливались в бортах корпуса. Боевая масса броневика с экипажем из 7 человек, 44 пушечными выстрелами и 5000 патронами составляла 8600 кг.

Бронировку 30 «гарфордов» произвел Путиловский завод в период с января по сентябрь 1915 года.

Несмотря на громоздкость и малую подвижность,

«гарфорды», что называется, «пришлись ко двору» — все их недостатки компенсировались огневой мощью. В этом русский броневик превосходил даже английские и французские танки того времени. Именно за это броневики любили в войсках, что подтверждает доклад, обобщающий опыт боевой работы «гарфордов» за 1915-1916 годы: «3-дм пушка отличная. В боях бывают необходимы граната и шрапнель, так как в каждом бою бывает комбинированная стрельба. Уча-

1916 года. Для повышения проходимости на задние колеса одевали

ствовавшие в боях «гарфорды» все изранены (попадания пуль и осколков), но пробоин нет. Бывали случаи в боях, что «гарфорды» подъезжали на 200 и менее шагов. Пулеметный огонь с «Гарфорда» бывает в каждый его выезд».

цепи противоскольжения

К концу сентября 1917 года боевые потери «гарфордов» составили 4-5 машин. В целом, несмотря на большую массу и маломощный двигатель, эти бронеавтомобили отличались добротностью изготовления, надежностью в эксплуатации и эффективностью в бою.

Так, 15 сентября 1916 года 20-е автопулеметное отделение поддерживало атаку

пехоты у населенных пунктов Ясинува и Дубе. В ходе боя «Гарфорд» «Громобой» артиллерийским и пулеметным огнем во фланг австрийским окопам подавил резервы противника и разбил взвод его орудий, несмотря на то, что получил пробоину в борту башни. Броневик отошел только после того, как расстрелял весь боезапас.

Помимо «сухопутных» существовали и «морские» «Гарфорды»: в 1916 году 18 таких машин изготовили для Броневого артиллерийского дивизиона сухопутного фронта Морской крепости Императора Петра Великого (Ревель). Таким образом, сум-

ночь с 20 на 21 октября 1915 года 15-й автопулеметный взвод поддерживал разведку боем, проводимую 408-м пехотным полком 9-й армии Юго-Западного фронта. Тяжелее всего пришлось «Гарфорду» «Гроза», который вел огонь из пушки – пулеметный огонь мог задеть свою пехоту. Несмотря на то, что противник открыл по броневику интенсивную стрельбу из пушек и пулеметов, машина отошла на исходные позиции без потерь

В результате поддержки броневика 408-й пехотный полк выполнил поставленную задачу с минимальными потерями. При этом основная заслуга в этом принадлежала «Гарфорду» с его 76-мм орудием.

марный выпуск этих броневиков составил 48 машин.

В августе 1917 года взвод «морских» «Гарфордов» («Ревелец», «Непобедимый», название третьей машины неизвестно) принимал участие в боях, которые 12-я армия Северного фронта вела под Ригой. Машины действовали совместно с 11-й и 77-й Сибирскими стрелковыми полками в боях у мыз Олай, Ролбум и Боренберг. Все три броневика в этих боях были потеряны и попали в руки немцев.

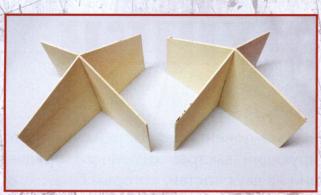
В ходе Гражданской войны «Гарфорды» участвовали в боях на стороне всех воюющих сторон — красных, белых, украинцев, поляков. При этом броневики не только поддерживали свою пехоту и кавалерию, но и успешно боролись с бронетехникой противника.

Так, 21 марта 1920 года под Новоград-Волынским огнем польского броневика «Гарфорд» был подбит бронеавтомобиль «Остин-кегресс» из состава 6-го автобронеотряда Красной Армии. Машина была захвачена поляками и после ремонта введена в строй.

В ходе боев на Каховском плацдарме летом-осенью 1920 года командование красных сформировало 42-й сводно-тяжелый автоброневой отряд, имевший шесть броневиков «Гарфорд». Отряд предназначался для борьбы с танками белых. В ходе боя 14 октября артогнем «Гарфордов» были подбиты два танка — «Генералиссимус Суворов» и «За Русь Святую», которые стали трофеями Красной Армии.

Служба «Гарфордов» в РККА продолжалась до конца 1920-х годов, после чего их сначала поставили на склады, а затем порезали на металл. Ни одного броневика до наших дней не сохранилось.

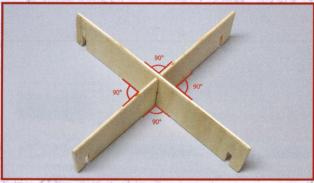
год. Машина называется «Михайловец».

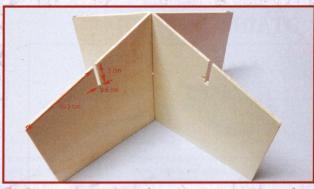


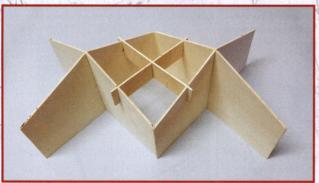
радиоуправляемая модель ТАНКА 1'-72

Тентованная палатка больших размеров

В этом выпуске мы подробно расскажем о том, как и из каких материалов можно сделать основание для палатки большого размера. Такие палатки на поле сражения могут обозначать различные объекты. Их используют для создания военных баз, командных пунктов и складов,


но они также могут стать надежным укрытием для танков или местом для засады.

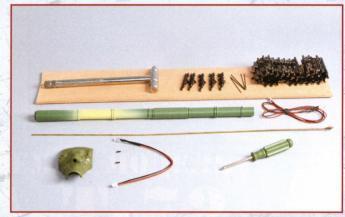

1 Чтобы сделать основу для большой палатки, вам сначала потребуется изготовить два каркаса для небольшой палатки по инструкции, изложенной в 34-м номере.


Чтобы построить усиливающий элемент для каркаса, вам потребуется фанера, из которой надо вырезать два прямоугольника по размерам, указанным на снимке. Затем с помощью ножовки сделайте на них по три стыковочных паза, как показано на снимке. Длина и место пазов также указаны на снимке.

З Соедините две полученные детали, как показано на снимке. У вас получился усиливающий каркас.

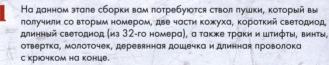
Возьмите основание для небольшой палатки и на двух ее ребрах с помощью ножовки сделайте два стыковочных паза, как показано на снимке. Ту же операцию повторите на второй детали основания.

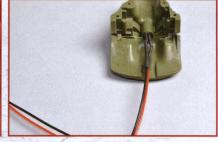
5 С помощью усиливающего каркаса соедините две детали основания, как показано на снимке.


Натяните на изготовленный каркас чехол из камуфляжной ткани. Палатка готова.

СБОРКА НУШКИ

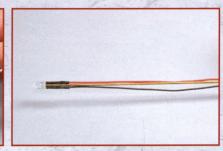
этим номером вы получили основные компоненты для сборки пушки. Это инфракрасный светодиод, имитирующий выстрел основного орудия, а также защитный кожух, состоящий из двух частей, который будет крепиться к основному орудию.

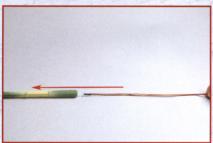

ЭТАНЫ СБОРКИ


комплект деталей

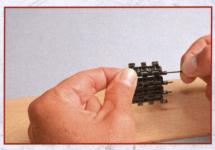
- 1. Верхняя часть защитного кожуха
- 2. Нижняя часть защитного кожуха
- 3. Винты
- 4. Светодиод с проводным коннектором

Вставьте короткий светодиод в центральное отверстие, расположенное на внутренней части защитного кожуха, как показано на снимке.


З Светодиод должен быть надежно зафиксирован в центральном отверстии верхнего защитного кожуха.

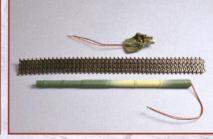

4 Вставьте винты в отверстия, обведенные на снимке красными кружками, и осторожно вкрутите их, чтобы нарезать резьбу.

Осторожно размотайте длинный провод светодиода, потянув его за концы, как показано стрелочками на снимке.


Вставьте проволоку в основание светодиода, чтобы можно было им манипулировать.

Протолкните светодиод сквозь ствол с помощью проволоки.

На снимке показано, как светодиод должен встать в раструбе ствола.


Возьмите траки и аккуратно протолкните штифт через их лапки, как показано на снимке. Снаружи должна остаться часть штифта с резьбой.

10 С помощью штифта присоедините собранный сегмент траков к ранее собранной части гусеничной ленты.

Поставьте траки вертикально на деревянную дощечку. Возьмите молоточек и, не прилагая особых усилий, сделайте несколько ударов по окончанию штифтов, чтобы они полностью вошли в лапки траков.

12 Очередной этап сборки завершен.

новинка!

СОБЕРИТЕ ЛЕГЕНДАРНЫЙ ЛИМУЗИН, КУЛЬТОВУЮ МОДЕЛЬ ЗИС-110

В КИОСКАХ

ДЛИНА: 750 MM, ВЫСОТА: 216 MM, ШИРИНА: 245 MM

ОФОРМИТЕ ПОДПИСКУ И ПОЛУЧИТЕ



ЭКСКЛЮЗИВНАЯ МОДЕЛЬ **ЗИС-110 В МАСШТАБЕ 1:43** В ЗОЛОТОМ ЦВЕТЕ

СЛЕДУЮЩИЙ ВЫПУСК КОЛЛЕКЦИИ

с новыми деталями легендарного танка уже через неделю!

В КОМПЛЕКТЕ:

Механизм отдачи Соединительный шуруп Пружина

